Многократно применяя правило отделения, мы можем получить новое знание, напр., в виде A -> T. Действительно, из A и A -> B получаем B, затем из B и B -> G получаем G, затем из G и G -> T получаем T. Формально в математической логике 3 шага данного вывода записываются как:
, ,
В такой записи над чертой записываются посылки, под чертой — следствия. При этом заметим, что в итоге мы построили умозаключение A -> T и одновременно получили цепочку рассуждения: A, A -> B -> G -> T. Заметим также, что данная цепочка не — единственно возможный путь для получения результата A -> T. Тот же вывод получим, построив и др. цепи доказательств. Напр., цепь № 2: из A, A -> L получаем L, затем из L, L -> B получаем B, далее логический вывод идет так же, как в предыдущем случае; цепь № 3 напишем в сокр. виде: A, A -> L -> K -> G -> T.
Данный пример удобно представить не только в аналитическом, но и в образном виде, как часть графа или С. с. (см. рис. 9). Такого рода представления служат целям структурирования информации. В каждом узле сети собирается вся информация по некоторому объекту (ситуации). Эта информация представляется в виде наборов характеристик или атрибутов объекта, а также в виде ссылок, указывающих связи между узлами (объектами).
Рис. 9. Участок С. с. в хорошо структурированной области знаний
В общем виде для обозначения структурированной системы данных, касающихся некоторого объекта, или «ядра», знаний к.-л. области, используется термин фрейм (от англ. frame — каркас, рамка). При этом понятие фрейма достаточно широкое: структура фрейма м. б. разной для разных областей знаний и рассуждений, что отражает глубокие различия природы разных областей знаний. (Очевидно, организация знаний в физике и в истории права имеет различное строение.)
Отдельный вопрос касается того, при помощи каких методов можно установить, какие понятия действительно близки (далеки) в пространстве С. с. данного «ядра» знаний (фрейма). Сама задача требует построения метрики пространства семантической памяти. В основе математических методов (факторный анализ и многомерное шкалирование), используемых для этих целей, лежит формирование матриц сходств понятий. Испытуемые (эксперты) на основании своих интуитивных правил оценивают попарное сходство между исходными объектами.
В итоге становится возможным ввести некоторую метрику, количественно описывающую близость исходных объектов в многомерном пространстве семантической памяти. В этом пространстве объекты будут представлены точками, расстояния между которыми определяются в соответствии со степенью их близости в памяти испытуемых.
В вышеприведенном примере не явным образом считалось, что все исходные высказывания имеют в процессе решения задачи одинаковые приоритеты. Вследствие этого все 3 цепи логического вывода (умозаключения) имели одинаковую вероятность построения. Более того, на основе имеющихся фактов с равной вероятностью можно начинать строить вывод, исходя не из факта A, а из фактов B, B -> D или к.-л. др. В результате предположения равной вероятности взаимных связей между фактами в ходе построения логического вывода возникает огромный перебор вариантов, причем с ростом длины вывода время перебора растет лавинообразно. Для уменьшения этой опасности (а полностью избежать ее невозможно) необходимо использовать системы приоритетов, указывающие разные вероятности связей между разными фактами или, др. словами, разные вероятности ссылок.
Это интересно:
Измерение черт личности
Айзенк сконструировал множество опросников самооценки для определения индивидуальных различий по трем суперчертам личности. Самым последним из них является «Личностный опросник Айзенка» (Eysenck Personality Questionnaire, EPQ) (Ильин Е.П ...
Организация психолого-педагогической профилактики
Анализ накопленного опыта в области педагогической профилактики, безусловно, может быть использован при разработке воспитательной программы. Однако простое копирование педагогом даже самых эффективных вариантов вряд ли целесообразно. Ведь ...
Методы диагностики и коррекции, как средство
преодоления эмоционального неблагополучия детей дошкольного возраста. Диагностика эмоционального
неблагополучия детей дошкольного возраста
Диагностическим обследованием было охвачено 11 детей - воспитанников ДОУ № "……". Возраст детей 6 лет.
В процессе диагностики были использованы следующие методики:
1) Методика "Дом - Дерево - Человек". (см. Приложение ...