Метод корреляций
Страница 2

Психология поведения » Метод корреляций

Числовой метод вычисления коэффициента корреляции описан в Приложении II. Сейчас, однако, мы сформулируем несколько элементарных правил, которые помогут вам разобраться с коэффициентом корреляции, когда вы встретитесь с ним в последующих главах.

Корреляция бывает положительной (+) и отрицательной (-). Знак корреляции показывает, связаны ли две переменные положительной корреляцией (величина обеих переменных растет или уменьшается одновременно) или отрицательной корреляцией (одна переменная растет при уменьшении другой). Предположим, например, что количество пропусков занятий студентом имеет корреляцию -0,40 с баллами в конце семестра (чем больше пропусков, тем меньше баллов). С другой стороны, корреляция между полученными баллами и количеством посещенных занятий будет +0,40. Прочность связи одна и та же, но знак ее зависит от того, считаем ли мы пропущенные или посещенные занятия.

По мере усиления связи двух переменных r увеличивается от 0 до 1. Чтобы лучше это представить, рассмотрим несколько известных положительных коэффициентов корреляции:

- Коэффициент корреляции между баллами, полученными в первый год обучения в колледже, и баллами, полученными на втором году, составляет около 0,75.

- Корреляция между показателями геста на интеллект в возрасте 7 лет и при повторном тестировании в 18 лет составляет примерно 0,70.

- Корреляция между ростом одного из родителей и ростом ребенка во взрослом возрасте, составляет около 0,50.

- Корреляция между результатами теста на способность к обучению, полученными в школе и в колледже, равна примерно 0,40.

- Корреляция между баллами, полученными индивидуумами в бланковых тестах, и суждением психолога-эксперта об их личностных качествах составляет около 0,25.

В психологических исследованиях коэффициент корреляции 0,60 и выше считается достаточно высоким. Корреляция в диапазоне от 0,20 до 0,60 имеет практическую и теоретическую ценность и полезна при выдвижении предсказаний. К корреляции от 0 до 0,20 следует относиться осторожно, при выдвижении предсказаний ее польза минимальна.

Тесты. Знакомый пример использования корреляционного метода — тесты по измерению некоторых способностей, достижений и других психологических качеств. При тестировании группе людей, различающихся по какому-нибудь качеству (например, математическим способностям, ловкости рук или агрессивности), предъявляют некоторую стандартную ситуацию. Затем можно вычислить корреляцию между изменениями показателей данного теста и изменением другой переменной. Например, можно установить корреляцию между показателями группы студентов в тесте на математические способности и их оценками по математике при дальнейшем обучении в колледже; если корреляция значительная, то на основе результатов этого теста можно решить, кого из нового набора студентов можно перевести в группу с повышенными требованиями.

Тестирование — важный инструмент психологических исследований. Оно позволяет психологам получать большое количество данных о людях с минимальным отрывом их от повседневных дел и без применения сложного лабораторного оборудования. Построение тестов включает множество этапов, которые мы подробно рассмотрим в последующих главах.

Корреляция и причинно-следственные связи. Между экспериментальными и корреляционными исследованиями есть важное различие. Как правило, в экспериментальном исследовании систематически манипулируют одной переменной (независимой) с целью определить ее причинное воздействие на некоторые другие переменные (зависимые). Такие причинно-следственные связи нельзя вывести из корреляционных исследований. Ошибочное понимание корреляции как причинно-следственного отношения можно проиллюстрировать на следующих примерах. Может существовать корреляция между мягкостью асфальта на улицах города и количеством солнечных ударов, случившихся за день, но отсюда не следует, что размягченный асфальт выделяет какой-то яд, приводящий людей на больничную койку. На самом деле изменение обеих этих переменных — мягкости асфальта и числа солнечных ударов — вызывается третьим фактором — солнечным теплом. Еще один простой пример — высокая положительная корреляция между большим количеством аистов, гнездящихся во французских деревнях, и высокой рождаемостью, зарегистрированной там же. Предоставим изобретательным читателям самим догадываться о возможных причинах такой корреляции, не прибегая к постулированию причинно-следственной связи между аистами и младенцами. Эти примеры служат достаточным предостережением от понимания корреляции как причинно-следственного отношения. Если между двумя переменными есть корреляция, изменение одной может вызывать изменения другой, но без специальных экспериментов такой вывод будет неоправданным.

Страницы: 1 2 


Это интересно:

Аттракция и стереотипизация
Аттракция (от лат. attrahere – привлекать, притягивать) – особая форма восприятия одного человека другим, основанная на формировании устойчивого эмоционально положительного чувства к нему. Люди не просто воспринимают друг друга, но форм ...

СООтношение собственного «Я» и образа тела у белорусских женщин
Целью нашей практической части стало всестороннее изучение личности белорусских женщин, склонных к полноте, их мировосприятие и самовосприятие, их понимание мира вокруг себя и своего места в этом мире. В результате была сформирована след ...

Исследование особенностей общения сотрудников правоохранительных органов. Описание групп испытуемых и методов исследования
В основу рабочей гипотезы исследования положено предположение о том, что профессиональная деятельность сотрудников правоохранительных органов оказывает влияние на специфику их стиля общения, вследствие этого, для более опытных сотрудников ...